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Abstract: Leaf chlorophyll concentration (LCC) is an important indicator of plant health, vigor,
physiological status, productivity, and nutrient deficiencies. Hyperspectral spectroscopy at leaf level
has been widely used to estimate LCC accurately and non-destructively. This study utilized leaf-level
hyperspectral data with derivative calculus and machine learning to estimate LCC of sorghum.
We calculated fractional derivative (FD) orders starting from 0.2 to 2.0 with 0.2 order increments.
Additionally, 43 common vegetation indices (VIs) were calculated from leaf spectral reflectance
factor to make comparisons with reflectance-based data. Within the modeling pipeline, three feature
selection methods were assessed: Pearson’s correlation coefficient (PCC), partial least squares based
variable importance in the projection (VIP), and random forest-based mean decrease impurity (MDI).
Finally, we used partial least squares regression (PLSR), random forest regression (RFR), support
vector regression (SVR), and extreme learning regression (ELR) to estimate the LCC of sorghum.
Results showed that: (1) increasing derivative order can show improved model performance until
certain order for reflectance-based analysis; however, it is inconclusive to state that a particular order is
optimal for estimating LCC of sorghum; (2) VI-based modeling outperformed derivative augmented
reflectance factor-based modeling; (3) mean decrease impurity was found effective in selecting
sensitive features from large feature space (reflectance-based analysis), whereas simple Pearson’s
correlation coefficient worked better with smaller feature space (VI-based analysis); and (4) SVR
outperformed all other models within reflectance-based analysis; alternatively, ELR with VIs from
original reflectance yielded slightly better results compared to all other models.

Keywords: chlorophyll concentration; fractional derivatives; hyperspectral spectroscopy; machine
learning; extreme learning regression

1. Introduction

Demand for sustainable and high yield crops is continually increasing due to rapid population
surge and climate change [1–3]. Cereal crops can play a significant role in meeting such demand [4].
Among many different cereals, sorghum (Sorghum bicolor) is an important crop in semi-arid environments
due to its high drought, heat, and water tolerance [5,6]. However, accurate genomic selection
is indispensable to increase the yield and stress tolerance [7,8], which heavily relies on different
phenotypic traits collected at plant breeding stations [9–11]. Leaf chlorophyll concentration (LCC) is
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one of the major leaf biochemical properties commonly evaluated in crop phenotyping. Other than
genomics-assisted breeding, LCC can also indicate plant physiological status, health, productivity,
and nutrient deficiencies in precision agriculture practices [12–14]. Laboratory-based chemical analysis
of LCC can be accurate, but the process is destructive, labor-intensive, and not feasible for large-scale
fields [14]. Therefore, predicting leaf biochemical properties non-destructively and efficiently is
a priority in plant genetics, physiology, and breeding applications.

Reflectance spectroscopy, or hyperspectral remote sensing, is a promising technique to estimate
leaf physiological and chemical properties rapidly and non-destructively [15,16]. The principle
behind this technique involves remote measurement of reflected solar radiation using imaging and/or
non-imaging sensors [17]. The reflectance spectra can be divided into visible (VIS, 400–700 nm),
near-infrared (NIR, 700–1100 nm), and short wave infrared (SWIR, 1100–2500 nm) bands in terms
of wavelengths, which can be used to model different leaf biochemical properties. Leaf reflectance
data are often preferred for testing new algorithms or concepts because they are not influenced by
atmospheric effects such as scattering and absorption. In general, the modeling approach for LCC can
be divided into two broad categories: (1) empirical approach, and (2) inversion of radiative transfer
models. Empirical modeling is the most widely used approach, where LCC can be estimated from
either original reflectance or vegetation indices by developing linear or non-linear models [18–20].
However, empirical models may lack generalization capability across different plant species and
field conditions [21]. Therefore, inversion of radiative transfer models (RTMs) has also been used to
estimate LCC, where the assumption is that RTMs accurately describe the spectral variation of canopy
reflectance as a function of canopy, leaf, and soil background characteristics [22]. However, the ill-posed
nature of model inversion can be problematic since various combinations of canopy parameters may
yield almost similar spectra, and it requires a large number of input parameters from the field [23,24].

Numerous studies have demonstrated the potential of empirical modeling in LCC estimation
from hyperspectral spectroscopy since the 1970s. However, the prediction accuracy of empirical
models using reflectance spectra often suffers from signal noise, baseline effects, and overlapping
problems [25,26]. Signal noise for handheld spectroradiometers is highly susceptible to the sun’s
illumination, instrument quality, and environmental conditions [27]. To account for these issues,
first-order and second-order derivative techniques have been widely applied to reduce signal noise
by capturing subtle details in the spectral curve [28–30]. First-order and second-order derivatives
are functions of mathematical change, where they represent the slope and curvature of the spectral
curve, respectively [31–33]. However, studies have also examined that integer derivative techniques
(e.g., first-order and second-order) may result in spectral information loss or noise amplification,
which could affect the model performance for LCC estimation [34,35].

Fractional derivative (FD) is a novel branch of derivative calculus, which is widely applied
in the control systems, signal smoothing, biological engineering, and image processing [36–38].
Since integer-order derivative models may insufficiently represent the fractional order-based systems,
the FD can better represent such issues [39]. The calculation of FD is similar to integer ordering, but the
order is arbitrarily extended to fractions [40].

Several studies have utilized FD-augmented hyperspectral data for different chemometric
applications: for example, Schmitt [41] found improved results in estimating hemoglobin concentration
from scattering liquid by using FD-augmented spectra; Li et al. [42] designed a FD filter for
resolving simulated overlapped Lorentzian peaks in spectral data; Tong et al. [43] applied FD
transformation to Savitzk–Golay (SG) derivative that resulted in a better performing tobacco-diesel
spectral inversion model. Additionally, few studies have found improved performance in estimating
different soil properties from FD-augmented spectral data, such as desert soil carbon content [44],
electrical conductivity of saline soil [45], soil chromium content [46], and soil organic matter
content [35,39]. However, for vegetation or crop related studies, we found three studies that
used FD treatment to hyperspectral data for estimating nitrogen (N) content from different crops
(i.e., industrial rubber [47], cotton [48], and rice [49]). The results from these studies documented
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the better modeling capabilities from FD-augmented hyperspectral data in N-content estimation.
However, to our knowledge, we have not found any studies that utilized FD augmented hyperspectral
data for estimating either LCC or any other biochemical properties from sorghum.

Machine learning (ML) algorithms play an important role in estimating crop LCC and other
phenotyping traits from either hyperspectral spectroscopy or multi-sensor imageries. For example,
multiple linear regression (MLR) [50–53], partial least squares regression (PLSR) [49,54–57],
random forest regression (RFR) [14,58,59], support vector machine based regression (SVR) [48,54,57,58],
and back propagation neural networks (BPNNs) [14,35,50] have shown incredible performance in
estimating LCC of different crops. Recently, extreme learning machine based regression (ELR) [60]
has been found to be an efficient and rapid learning algorithm for regression, which outperformed
some other ML algorithms for many practical applications [61–64]. In addition to model training,
feature selection is a crucial step before starting any ML pipeline. For example, there could be
varying results depending on what feature selection method and how the method is implemented
with the training data. However, there has not been any comprehensive study that compares the
performance of several ML algorithms in terms of derivative-augmented hyperspectral data for
phenotypic trait estimation.

The goal of this study is to investigate the influence of derivative calculus on hyperspectral
reflectance data for estimating LCC of sorghum. We asked the following research questions to achieve
this goal: (1) Can derivative analysis better quantify LCC of sorghum among reflectance-based and
vegetation index (VI)-based spectral data? (2) Which combination of feature selection and ML algorithm
has better prediction capability? (3) Can common VIs better estimate LCC compared to reflectance
spectra? In this study, we analyzed different derivative orders (including both integer and fractional
orders), three feature selection methods (i.e., Pearson’s correlation coefficient, variable importance in
the projection, and mean decrease impurity), and four ML algorithms (i.e., PLSR, RFR, SVR, and ELR)
for LCC estimation of sorghum.

2. Materials and Methods

2.1. Study Site and Plant Material

The study area (Figure 1) is the Transportation Energy Resources from Renewable Agriculture
Phenotyping Reference Platform (TERRA-REF) field scanner (Figure 1b) field site at the Maricopa
Agricultural Center, Maricopa, Arizona, United States. The details of this field scanner system can
be found in the research of Burnette et al. [65]. The experimental field site (33.070◦N, 111.974◦W,
elevation 360 m) was planted on 3 August 2016 with two replicates of a Sorghum bicolor research
population from Texas A&M (W Rooney) comprised of 173 recombinant inbred lines at the F-10
generation plus the parental lines SC56 and Tx7000. The field layout included 32 rows by 54 ranges in
total, with the two outer lateral rows and end ranges as border plots to reduce edge effects. Border
plots were excluded from any quantitative analysis. Experimental design followed a two-replicate
alpha design with row-column constraint. Plots were four-row plots, 3.5 m long and 0.76 m row
spacing, such that sorghum lines were evaluated in the two inner row subplots while the two outer
rows were plot borders to reduce plot-to-plot edge effects. There were 350 total plots, where each plot
had two subplots and was given unique identifiers. The field trial was managed for optimal growth.
Initial irrigation was from sprinklers for emergence followed by subsurface drip lines.

2.2. Data Collection

2.2.1. Leaf Chlorophyll Concentration Measurements

In-situ ground LCC was collected using Dualex 4 Scientific (Figure 1c in yellow box, Force-A,
France) handheld sensor for 394 sample leaves from 349 plots. The Dualex 4 Scientific instrument
measures leaf chlorophyll index by using a red-edge band (710 nm) and a NIR band (850 nm),
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and estimates LCC in µg/cm2 using a calibration coefficient [66]. Only sunlit representative leaves from
each plot were selected for measurements. The LCC measurements were taken at noon on two days,
(9 November 2016 and 11 November 2016) while the sorghum plants were at the grain development
growth stage.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 29 
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Figure 1. Location of test site and data collection. (a) Experimental field; (b) the field scanner operating
in the field; (c) in-situ data collection of leaf chlorophyll concentration (LCC) using Dualex 4 Scientific
(yellow box) and spectral data using PSR-3500 spectroradiometer (blue box); (d) location of study area
in Pinal County, AZ; (e) a top view image of the field collected from ArcGIS Online.

2.2.2. Hyperspectral Reflectance Measurements

Reflectance measures, or specifically, the hemispheric conical reflectance factor (HCRF, [67]) were
collected using a Spectral Evolution portable spectroradiometer PSR-3500 (Figure 1c in blue box;
Spectral Revolution, Inc., Lawrence, MA, USA) almost simultaneously with the Dualex measurements
from the same sorghum leaves. Measurements were taken under clear-sky conditions near solar
noon to minimize the disturbances from changes in sun angle and cloud or canopy shadow.
The spectroradiometer has a spectral range of 350–2500 nm with a resolution of 3.5 nm in the
350–1000 nm range, 10 nm in the 1000–1900 nm range, and 7 nm in the 1900–2500 nm range. A reference
spectrum taken from a 99% Spectralon calibration panel (Labsphere, Inc., North Sutton, NH, USA) was
used to normalize leaf spectral measurements to reflectance factor. Calibration panel readings were
repeated for every 15 min to readjust the baseline to account for any changes in illumination condition.
A leaf clip with a bifurcated fiber-optic and a 5-watt tungsten halogen lamp light source was used to
record leaf reflectance factor with a black background. With pre-configured settings, the PSR-3500
spectroradiometer averaged 40 readings automatically for each sample. The spectral reflectance factor,
referred to as the reflectance hereafter, was interpolated to 1 nm, which resulted in 2151 individual
spectral bands.

2.3. Fractional Derivative Calculation

Fractional-order derivative has been utilized as a tool to extract useful and sensitive information
in many fields of signal processing [68–70]. Although fractional derivative (FD) refers to derived
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integer-order derivative into any positive order, the calculation of FD is complex and several algorithms
exist to calculate. However, Riemann–Liouville, Grunwald–Letnikov, and Caputo are the three most
frequently used classic definitions [71–74]. We adopted the Grunwald–Letnikov (G-L) definition to
calculate FD at different orders in this study due to its specifically simple formula and coefficients [75].
The G-L definition is generally expressed as Equation (1):

dα f (x) = lim
h→0

1
hα

(t−a)/h∑
m=0

(−1)m Γ(α+ 1)
m!Γ(α−m + 1)

f (x−mh) (1)

where α is any order, h is the step size, t and a are the upper and lower limits of the fractional
order derivative, respectively. The G-L algorithm uses a Gamma function, which is expressed as
Γ(α) =

∫
∞

0 exp(−u)uα−1du = (α− 1)!. Considering the resampling interval of spectral reflectance as
1 nm and h = 1, the derived difference in the fractional order derivative of single variable function f (x)
can be expressed as Equation (2):

dα f (x)
dxα

≈ f (x) + (−α) f (x− 1) +
(−α)(−α+ 1)

2
f (x− 2) + . . .+

Γ(−α+ 1)
n!Γ(−α+ n + 1)

f (x− n) (2)

We considered calculating FD orders from 0.2 to 2.0 with 0.2 order increments. Therefore, 10 different
orders were calculated from the spectral data using the G-L algorithm. A Python package named
“differint” [76] was used to calculate the FD augmented spectral data.

2.4. Calculation of Vegetation Indices

Hyperspectral narrow band vegetation indices (VIs) are commonly used to estimate different crop
biophysical and biochemical properties. We selected 43 common VIs (Table 1) based on studies that
estimated different plant biochemical traits.

Table 1. Vegetation indices (VIs) selected in this study for VI-based modeling.

VI Equation Reference

ARI1 1/R550 − 1/R700 [77]
ARI2 R800(1/R550 − 1/R700) [77]
Cart1 R695/R420 [78]
Cart2 R695/R760 [78]
Cart3 R605/R760 [78]
Cart4 R710/R760 [78]
Cart5 R695/R670 [78]
CCI (R777 −R747)/R673 [79]

Datt1 (R850 −R710)/(R850 −R680) [80]
Datt2 R850/R710 [80]
Datt3 R754/R704 [80]
EVI 2.5((R800 −R670)/(R800 − 6R670 − 7.5R475 + 1)) [81,82]

GNDVI1 (R750 −R550)/(R750 + R550) [83]
GNDVI2 (R800 −R550)/(R800 + R550) [83]
MCARI1 ((R700 −R670) − 0.2(R700 −R550))(R700/R670) [84]
MCARI2 1.2(2.5(R800 −R670) − 1.3(R800 −R550)) [85]
mNDVI (R750 −R705)/(R750 + R705 − 2R445) [80,86]

mSR (R750 −R445)/(R705 −R445) [80,86]
MTCI (R754 −R709)/(R709 −R681) [87]
MTVI1 1.2(1.2(R800 −R550) − 2.5(R670 −R550)) [85]
NDCI (R762 −R527)/(R762 + R527) [88]
NDVI (R750 −R705)/(R750 + R705) [89]

PRI (R531 −R570)/(R531 + R570) [90]
PSRI (R678 −R500)/R750 [91]
REP 700+ 40((R670 −R780)/2−R700))/(R740−R700) [92]
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Table 1. Cont.

VI Equation Reference

RIdb R735/R720 [93]
SIPI (R800 −R445)/(R800 + R680) [94]

SPVI1 0.4× 3.7(R800 −R670) − 1.2|R530 −R670| [95,96]
SPVI2 0.4× 3.7(R800 −R670) − 1.2|R550 −R670| [95]

SR440/690 R440/R690 [97]
SR700/670 R700/R670 [98]
SR750/550 R750/R550 [98]
SR750/700 R750/R700 [99]
SR750/710 R750/R710 [100]
SR752/690 R752/R690 [100]
SR800/680 R800/R680 [86]

SRPI R430/R680 [101]
TCARI 3((R700 −R670) − 0.2(R700 −R550)(R700/R670)) [18]
TCARI2 3((R750 −R705) − 0.2(R750 −R550)(R750/R705)) [20]

TVI 0.5(120(R750 −R550) − 200(R670 −R550)) [102]
VOG1 R740/R720 [103]
VOG2 (R734 −R747)/(R715 + R726) [103]
VOG3 (R734 −R747)/(R715 + R720) [103]

2.5. Feature Selection Methods

Feature selection is one of the most important pre-processing steps before performing any ML
regression or classification pipeline [104–106]. Since hyperspectral data usually contain a large number
of features (i.e., wavelengths), it is ideal to reduce the number of features by selecting the most sensitive
features. Our spectral data contained reflectance values for wavelengths from 350–2500 nm with
1 nm intervals, which resulted in 2151 features. Therefore, dimensionality reduction by selecting
features that were sensitive to LCC was a necessary step. Other than assessing the impact of FD
in estimating LCC using different ML algorithms, we also focused on the effect of different feature
selection methods and number of features within the pipeline. We used three common feature selection
methods: Pearson’s correlation coefficient (PCC), partial least square based variable importance in
the projection (VIP), and random forest based mean decrease impurity (MDI) to rank the importance
of features.

2.5.1. Pearson’s Correlation Coefficient (PCC)

Pearson’s correlation coefficient (PCC) is a measure of the linear dependence between two random
variables, which is formally defined as the covariance of the variables divided by the product of their
standard deviations. The calculation of PCC (rxy) can be expressed as Equation (3):

rxy =

∑n
i=1(xi − x)

∑n
i=1(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(3)

where x = 1
n
∑n

i=1 xi and y = 1
n
∑n

i=1 yi denote the mean of x and y, respectively, with n sample size.
The coefficient (rxy) ranges from –1 to 1 and it is invariant to linear transformations of either variables.
The feature importance scores were calculated based on the absolute value of PCC.

2.5.2. Variable Importance in the Projection (VIP)

Partial least squares (PLS) regression is a common regression technique which is based on
explanatory variables that have maximal covariance with the target variable. However, a key feature
of PLS regression is that the importance of explanatory variables in predicting the target variable can
be quantified by a metric called variable importance in the projection (VIP). The VIP score measures
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the explicative power of explanatory variables with respect to the target variable which is based on
the PLS regression. Feature selection using VIP has been utilized in several studies related to remote
sensing of vegetation [107–110]. According to Eriksson and colleagues [111], the VIP score for the kth
variable for target variable y can be computed with Equation (4):

VIPk =

√√√√K
∑A

a=1

(
q2

atT
a ta

)
(wak/wk

2)∑A
a=1

(
q2

atT
a ta

) (4)

where a = 1, 2 . . . , A, which is the number of PLS components, K is the number of columns of X
(i.e., features or wavelengths), wak is the loading weight of the kth variable in the ath component, and ta,
wa, and qa are the ath column vectors of T, W, and Q, respectively. Here, W contains the X-weights
defining the common latent variable space T relating X and y, and Q holds the loading vectors that
best represent the y space. The variable with a higher VIP score shows the relevancy of using that
variable to predict the target variable.

2.5.3. Mean Decrease Impurity (MDI)

Random forest is an ensemble learning technique based on randomized decision trees and impurity
measurements [112] that can provide different feature importance measures. One such technique is
known as Gini importance or mean decrease impurity (MDI), when the random forest uses Gini index
as its impurity measurement. Breiman [112] proposed to evaluate the importance of a variable k for
predicting y (i.e., LCC) by adding up the weighted impurity decreases (p(t)∆i(st, t)) for all nodes t
where k is used and averaged over all NT trees in the forest as in Equation (5):

MDIk =
1

NT

∑
T

∑
t∈T:v(st)=k

p(t)∆i(st, t) (5)

where p(t) is the proportion Nt/N of sample reaching t, and v(st) is the variable used in split st.
Few studies have implemented MDI scoring for feature selection in ML pipeline [108,113,114]. In our
study, the MDI score of a variable (i.e., wavelength or VI) represents the corresponding importance
estimating LCC.

2.6. Machine Learning Algorithms

In the plant phenotyping community, several machine learning (ML) algorithms have become
popular in terms of both accuracy and computational efficiency [115]. We investigated four commonly
used ML regression techniques (i.e., PLSR, RFR, SVR, and ELR) for estimating LCC from reflectance
and VI-based spectra with derivative analysis. PLSR is a multivariate calibration technique that uses
component projection to reduce the full feature space to a smaller number of non-correlated features
(also known as latent variables) containing the most useful information [116]. Therefore, PLSR was
found to be very effective when the feature space is large, and multicollinearity exists within different
features [117]. RFR is an ensemble-learning algorithm that accumulates a large set of decision trees,
which are a hierarchically organized set of conditions or restrictions [118]. The process starts with
fitting decision tree to randomly drawn samples and for each tree node a subset of input features is
selected. Due to random selection of features in each tree, RFR is tolerant to outliers and noise [119].
SVR is the regression implementation of support vector machine (SVM). SVM transforms the non-linear
regression problem to a linear one by utilizing different kernel functions. These functions then map the
original input space into a high-dimensional feature space to find unique global solutions that are not
exploited by multiple local minima [120]. ELR is the regression version of extreme learning machine
(ELM), which is a feed-forward neural network with one input layer, one hidden layer, and one output
layer [60]. ELM can provide high computational efficiency because the hidden node parameters are
generated randomly [8].
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2.7. Modeling Pipeline and Evaluation

An automated modeling pipeline was developd (Figure 2) to train different ML regression
techniques. After creating both reflectance-based and VI-based derivative order datasets, the modeling
pipeline started with dividing the dataset into training (n = 244) and validation (n = 105) sets by a
70%/30% split. The validation set was kept completely outside of the feature selection and model
training parts, and only utilized during the final model evaluation step. Since different derivative
orders had different ranges of reflectance values, the features were scaled from 0 to 1 before any
modeling steps. Feature importance scores were calculated using three feature selection methods
(i.e., PCC, VIP, and MDI). Since both VIP and MDI were required to train PLSR and RFR models first,
the training parameters were selected based on a grid search algorithm and 10-fold cross-validation.
Based on different feature importance scores, different groups of features were extracted from different
derivative orders. For reflectance-based analysis, 25, 50, 75, 100, 125, 150, 175, and 200 feature groups
were created, whereas for VI-based analysis, 5, 10, 15, 20, 25, 30, 35, and 40 feature groups were
extracted. Each of these groups from different FD orders were input data for ML algorithms.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 29 
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Figure 2. Overall workflow of the feature extraction, feature selection, and modeling pipeline.

The feature groups from both reflectance-based and VI-based data were trained with different ML
models. Since different models require different training parameters, we carefully selected different
ranges of model parameters for PLSR, RFR, SVR, and ELR based on extensive literature survey,
and applied a grid search algorithm to select the best combination of model parameters. The grid
search was performed with a 10-fold cross-validation and mean squared error (MSE) was selected
as the scoring criteria. Therefore, the combination of parameters resulting in the lowest MSE was
considered as the optimal parameters for the model. Each feature group from different derivative
orders was processed through this technique and the average MSE score for each input set was retained.
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Finally, the combination of feature selection method and number of features that showed the lowest
MSE score within a particular derivative order and ML algorithm was used for model evaluation with
the validation set. The modeling pipeline was implemented in Python and the ML algorithms were
utilized from the “Scikit-learn” package [121].

The evaluation of model performance was conducted by using the coefficient of determination
(R2), root mean squared error (RMSE), and relative RMSE (RMSE%). The equations are as follows:

R2 = 1−

∑n
i=1(yi − ŷi)

2(
yi − yi

)2 (6)

RMSE =

√∑n
i=1(yi − ŷi)

2

n− 1
(7)

RMSE% =
RMSE

y
∗ 100 (8)

where i = 1, 2, 3, . . . . . . .., n is the validation sample, ŷi and yi represent the predicted and measured
LCC values, respectively, and y is the average of each measurable variable.

3. Results

3.1. Descriptive Statistics of Collected Samples

The descriptive statistics and distribution of sample LCC are presented in Table 2 and Figure 3a,
respectively. The collected leaf samples showed a range of LCC values from 30.8 to 70.3 µg/cm2

with a mean value of 50.26 µg/cm2. The sample distribution had a standard deviation of 7.54 with a
coefficient of variation (CV) of 15%. Figure 3a also shows normally distributed LCC sample values.
The descriptive statistics for spectral features are visually represented in Figure 3b. The mean spectral
curve (350–2500 nm) of corresponding LCC samples shows a typical reflectance pattern of healthy
vegetation: moderately strong reflectance at green region (approximately 500–650 nm), very strong
reflectance at NIR region (approximately 750–1000 nm), and two water absorption regions at around
1500 nm and 2000 nm. This reveals that the sample leaves selected for this study were healthy and
representative for the analysis.
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Figure 3. Distribution of collected LCC samples collected with Dualex 4 Scientific (a) and mean
hyperspectral spectra with 1 and 2 standard deviations collected using Spectral Evolution PSR-3500 (b).
(a) The left axis represents the frequency of LCC samples, whereas the right axis represents the probability
density; the target variable for this study (i.e., LCC) has a normal distribution. (b) The mean spectral
curve of sorghum leaf samples exhibits a health vegetation reflectance curve.
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Table 2. Descriptive statistics of LCC samples (µg/cm2).

Sample Size Maximum Minimum Mean SD CV (%)

LCC (µg/cm2) 349 70.30 30.80 50.26 7.54 15.00

Notes: SD: standard deviation; CV: coefficient of variation.

3.2. Spectral Features After Fractional Derivative Analysis

Fractional derivative-augmented spectra showed varying spectral patterns with increasing
fractional orders. Figure 4 shows such pattern from the corresponding reflectance spectra of three LCC
samples: the minimum (red line), maximum (green line), and median (blue line) LCC values. In the
case of the original spectral reflectance factor (Figure 4a, from here on the reflectance factor will be
denoted as original spectra), the maximum LCC spectra showed higher reflectance peaks at the NIR
region (around 750–800 nm) compared to the other two spectra. However, the difference between these
reflectance peaks at the NIR region started to diminish with fractional derivative analysis, specifically
after 0.4 order (Figure 4c). Derivative treatment also led to increase in the reflectance value with
increasing derivative orders exponentially, which allowed the derivative spectra to be sensitive to
subtle changes in the reflectance factor.
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Figure 4. Varying spectral features of the minimum (red line), median (green line), and maximum
(blue line) LCC samples after different fractional-order derivative treatment, i.e., original spectra in (a),
order 0.2 in (b), and so on until order 2.0 in (k) with 0.2 order as increment. Each plot also demarcates
the regions of visible (VIS), near-infrared (NIR), and short wave infrared (SWIR) bands with grey dashed
lines. The wavelengths are shown from 450 to 1800 nm since typical vegetation spectra show noise
at around 400 nm and 2500 nm. With increasing derivative order, the range of derivative reflectance
factor starts increasing which can be observed in (b–k).
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Based on Figure 4, the number of reflectance and absorption peaks increased with incremental
derivative orders compared to original spectra. For example, a subtle reflectance peak in the original
spectra of maximum LCC sample (green line in Figure 4a) at around 800–1000 nm is amplified in
the 0.2 derivative order spectra (Figure 4b). The FD treatment to reflectance spectra enabled sensitive
features to become more significant by increasing the derivative reflectance value at certain bands
(e.g., the derivative reflectance curve showed a sharp change at around 1000 nm in 0.4 order, Figure 4c),
whereas the less sensitive bands were found comparatively lower in their derivative reflectance values.

3.3. Feature Importance Scores

The relationship between different features and the target variable in this study (i.e., LCC) is a
crucial step before performing model training. Figure 5 shows such a relationship between features
from different derivative orders and LCC based on Pearson’s correlation coefficient (Pearson’s R).
Pearson’s R ranges from –1 to +1, which represent the negative and positive relationships, respectively.
All correlation coefficients from different features and LCC values were tested at the 0.01 significance
level (99% confidence); they are shown in Figure 5 for each derivative order. Overall, there were negative
correlations between original reflectance spectra and LCC at around 750 nm, 1400 nm, and 2000 nm
wavelengths, where some features passed the significance test (Figure 5a). Very few features in original
spectra showed a positive correlation and not a single feature with a positive correlation showed
statistical significance (Figure 5a). However, with increasing derivative orders, both the correlation
coefficient and number of features passing the significance test increased (Figure 5b–k). The highest
correlation (both positive and negative) was found at around 700–750 nm range from 1.0 and 1.2 order
derivatives. After 1.4 order, the overall correlation and number of significant features started dropping
and the correlation curve became noisy (Figure 5i–k).Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 29 
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99% confidence. The data points located beyond these limits are significantly correlated with LCC.
With increasing derivative order, several wavelengths showed increased and statistically significant
correlation coefficients (c–h). However, from order 1.6 (i), the pattern of correlation becomes noisy
and insignificant.

Figures 6 and 7 show the feature importance scores from different feature selection methods for
reflectance spectra and VIs, respectively. The PCC, VIP, and MDI scores were scaled in the range
of 0–1 to make uniform comparison of scores between each derivative orders and feature selection
methods. An important consideration for this analysis was that the scores were calculated using only
the training samples, whereas the validation set was set aside for further model evaluations. In terms
of reflectance-based feature importance scores (Figure 6), the PCC tended to extract sensitive features
from around 700 nm, 1400 nm, and 1800–2400 nm range (Figure 6a). With increasing derivative orders,
the most important features were concentrated at around 700 nm and 1400 nm, and after 1.6 order,
the pattern of important features became noisy. The VIP scores (Figure 6b) showed a similar pattern of
feature importance as the PCC, however, the values were slightly different. Alternatively, in terms
of MDI (Figure 6c), the feature importance was more discrete than PCC and VIP. The MDI resulted
in important features at the 2000 nm region for original spectra (order 0.0), whereas with increasing
derivative orders, the important features were found at around 700–800 nm region. Usually this region
is considered as the NIR region and the correlation between features at this region and LCC was found
significantly improving with increasing derivative orders (Figure 5). However, the MDI highlighted
unique wavelengths as a result of very clear and sharper increase in feature importance.
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Figure 6. Feature importance scores for wavelengths of different derivative orders calculated from
three feature selection methods: (a) Pearson’s correlation coefficient (PCC), (b) partial least squares
regression based variable importance in the projection (VIP), and (c) random forest regression based
mean decrease impurity (MDI). The 0.0 order in the x-axis represents the original spectra without
any derivative treatment. The feature importance score was scaled from 0–1 for each method and
derivative order.

Feature importance scores from the VIs are shown in Figure 7. The scores are shown for all
43 features with different feature selection methods, however, the order of the features in Figure 7 does
not represent any logical meaning. Similar to the reflectance-based feature importance scores, the PCC
and VIP showed similar patterns of feature importance with different derivative orders. The PCC
tended to highlight several important features even with original spectral data (order 0.0), for example,
Cart4, Datt1, MTCI, NDVI, REP, RIdb, SR750/710, VOG2, and VOG3 were found as showing higher
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scores. With increasing derivative orders, the scores for different features became noisier (Figure 7a,b).
In terms of MDI (Figure 7c), very few features were highlighted in each derivative order, for example,
only Vog2 and Vog3 were found highly important in original spectra, with order 0.2 and order 0.4,
respectively. After order 1.4, the number of important features increased abruptly.
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Figure 7. Feature importance score for vegetation indices of different derivative orders calculated from
three feature selection methods: (a) Pearson’s correlation coefficient (PCC), (b) partial least squares
regression based variable importance in the projection (VIP), and (c) random forest regression based
mean decrease impurity (MDI). The 0.0 order in the x-axis represents the original spectra without any
derivative treatment. The y-axis represents different VIs analyzed in this study; however, VIs are not
represented in any logical order.

3.4. Model Results of LCC Estimation

ML models (i.e., PLSR, RFR, SVR, and ELR) were trained with every possible combination of feature
selection methods and number of feature groups. Model evaluation metrics (i.e., R2, RMSE, and RMSE%)
were only calculated for the combination of feature selection method and number of features that
yielded the lowest cross validation MSE score from the training set. These metrics were calculated
with the validation dataset and all derivative orders of two different datasets: reflectance-based and
VI-based spectra. The validation metrics of LCC estimation are demonstrated in Table 3. In addition,
the model R2 and RMSE are illustrated in Figure 8 with respect to different derivative order.
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Table 3. Validation results of partial least squares regression (PLSR), random forest regression (RFR),
support vector regression (SVR), and extreme learning regression (ELR) for LCC with different
derivative orders.

Ord. Metrics
Reflectance-based VI-based

PLSR RFR SVR ELR PLSR RFR SVR ELR

0.0

R2 0.671 0.443 0.676 0.558 0.673 0.618 0.717 0.744
RMSE 4.493 5.842 4.459 5.207 4.477 4.841 4.169 3.964

RMSE% 9.035 11.747 8.966 10.471 9.002 9.734 8.382 7.971
Features VIP-75 MDI-50 VIP-75 VIP-50 VIP-30 MDI-10 PCC-25 PCC-15

0.2

R2 0.701 0.509 0.706 0.548 0.714 0.625 0.708 0.698
RMSE 4.279 5.486 4.249 5.265 4.187 4.794 4.231 4.306

RMSE% 8.603 11.032 8.543 10.588 8.418 9.639 8.509 8.658
Features VIP-75 MDI-75 VIP-175 VIP-50 PCC-10 VIP-30 PCC-15 PCC-10

0.4

R2 0.653 0.654 0.720 0.704 0.674 0.696 0.651 0.579
RMSE 4.616 4.605 4.142 4.261 4.468 4.320 4.623 5.081

RMSE% 9.281 9.259 8.330 8.567 8.984 8.686 9.295 10.217
Features VIP-25 MDI-125 MDI-100 VIP-25 PCC-20 MDI-10 PCC-15 PCC-15

0.6

R2 0.653 0.661 0.680 0.608 0.672 0.675 0.678 0.650
RMSE 4.614 4.560 4.427 4.901 4.482 4.464 4.445 4.624

RMSE% 9.278 9.169 8.902 9.855 9.012 8.975 8.938 9.296
Features VIP-50 MDI-50 MDI-175 MDI-25 PCC-15 MDI-20 VIP-15 VIP-15

0.8

R2 0.621 0.648 0.729 0.589 0.670 0.672 0.660 0.640
RMSE 4.820 4.649 4.078 5.018 4.499 4.483 4.566 4.697

RMSE% 9.692 9.347 8.201 10.090 9.047 9.014 9.182 9.445
Features VIP-200 MDI-50 MDI-25 MDI-25 PCC-15 MDI-5 PCC-10 VIP-10

1.0

R2 0.632 0.683 0.734 0.578 0.655 0.616 0.555 0.644
RMSE 4.747 4.409 4.041 5.086 4.596 4.850 5.226 4.673

RMSE% 9.546 8.865 8.125 10.227 9.241 9.753 10.508 9.397
Features VIP-200 MDI-75 MDI-75 PCC-25 PCC-10 MDI-20 PCC-20 VIP-10

1.2

R2 0.528 0.673 0.708 0.573 0.526 0.514 0.543 0.494
RMSE 5.380 4.480 4.235 5.119 5.393 5.461 5.296 5.572

RMSE% 10.818 9.009 8.515 10.294 10.844 10.981 10.649 11.203
Features VIP-175 VIP-75 VIP-150 VIP-50 MDI-5 MDI-15 MDI-5 MDI-5

1.4

R2 0.536 0.602 0.662 0.492 0.056 0.286 0.282 0.249
RMSE 5.332 4.937 4.550 5.579 7.607 6.614 6.633 6.786

RMSE% 10.721 9.927 9.149 11.219 15.295 13.299 13.337 13.645
Features VIP-200 MDI-25 PCC-150 MDI-25 VIP-15 MDI-15 MDI-5 PCC-5

1.6

R2 0.446 0.588 0.573 0.420 −0.020 0.066 −0.023 0.075
RMSE 5.830 5.028 5.119 5.962 7.906 7.567 7.919 7.530

RMSE% 11.724 10.110 10.294 11.988 15.898 15.215 15.924 15.141
Features VIP-175 PCC-25 VIP-150 PCC-50 MDI-10 MDI-10 MDI-5 MDI-5

1.8

R2 0.281 0.339 0.457 0.109 −0.065 −0.028 −0.087 −0.296
RMSE 6.637 6.368 5.771 7.393 8.082 7.940 8.164 8.915

RMSE% 13.347 12.805 11.605 14.865 16.251 15.966 16.417 17.926
Features PCC-200 MDI-25 VIP-150 MDI-25 PCC-5 MDI-25 PCC-10 VIP-10

2.0

R2 0.128 0.035 0.116 0.166 −0.280 −0.239 −0.089 −0.040
RMSE 7.311 7.691 7.361 7.151 8.860 8.715 8.173 7.986

RMSE% 14.701 15.465 14.802 14.380 17.816 17.525 16.434 16.058
Features VIP-150 MDI-75 VIP-100 VIP-50 MDI-5 MDI-10 MDI-5 VIP-30

Notes: Ord. represents derivative order; Features represent the optimum feature selection method and number of
features found for corresponding model and derivative order. R2: coefficient of determination; RMSE: root mean
squared error; RMSE%: relative RMSE.
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Figure 8. Model R2 and RMSE for reflectance-based analysis (left side, i.e., a,c), and VI-based analysis
(right side, i.e., b,d). The 0.0 order in the x-axis represents the original spectra without any derivative
treatment. For reflectance-based modeling, model performance increases; however, the performance
starts decreasing after certain derivative order. For VI-based modeling, the model performance was
found better with original spectra (order 0.0). With increasing derivative order, model performance
starts declining.

In terms of reflectance-based analysis (Figure 8a,c), the derivative order of 1.0 showed superior
performance with all four models (R2 ranging from 0.578 to 0.734 and RMSE% ranging from 8.125 to
10.227). The predictive performance of all models showed improvement with increasing derivative
order up to a particular point. For instance, PLSR (R2 of 0.701 and RMSE% of 8.603) showed the
highest result at order 0.2, RFR (R2 of 0.683 and RMSE% of 8.865) and SVR (R2 of 0.734 and RMSE%
of 8.125) yielded peaks at order 1.0, and ELR (R2 of 0.704 and RMSE% of 8.567) performed the
best at order 0.4. After the respective orders, each model started to decline in their performance
(Figure 8a,c). Overall, the SVR showed consistently good performance until the derivative order
reached 1.8 (R2 ranging from 0.457 to 0.734 and RMSE% ranging from 8.125 to 11.605). Table 3 also
shows the best combination of feature selection method and number of features for each model and
derivative order. The best performing model within the reflectance-based analysis (i.e., SVR with order
1.0) used 75 features selected by MDI. Overall, the MDI was found as the optimal feature selection
method for most of the well performed models.

Alternatively, when VIs were used as input features instead of reflectance spectra for different
derivative orders, the highest performance was observed at original spectra (R2 ranging from 0.618 to
0.744 and RMSE% ranging from 7.971 to 9.734). The best performing model was found with ELR at
original spectra (R2 of 0.744 and RMSE% of 7.971), which was even higher than the best model found
with reflectance-based analysis (i.e., SVR at order 1.0 resulting in R2 of 0.734 and RMSE% of 8.125).
The ELR with original spectra used 15 features as input which were selected by PCC. Overall, most of
the well-performing models at lower derivative orders showed PCC as an optimal feature selection
method. However, according to Figure 8b, the model performance decreased with increasing derivative
orders within the VI-based analysis. Therefore, the LCC estimation worked better with derivative
spectra at 1.0 order when direct reflectance from wavelengths was used, whereas the original spectra
showed good performance when the model inputs were VIs.

The distributions of predicted LCC values using different models, derivative orders, and feature
types (i.e., reflectance-based or VI-based) with validation dataset are illustrated in Figure 9. The boxplots
with different models show how different the distribution of predicted LCC values is with measured
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LCC values. Results showed that the reflectance-based analysis yielded good performance with
increasing derivative order until approximately 1.2 order, whereas the VI-based analysis showed
decreasing performance (distribution of predicted LCC values showed outliers and skewness) of
models with increasing derivative order.Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 29 
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4. Discussion

4.1. Performance Analysis of Derivative Spectra and VIs in LCC Estimation

The derivative calculus including both integer-orders and fractional-orders, has proven to
be an effective tool for analyzing spectra in many fields. Although many studies have utilized
first-order and second-order derivatives in estimating vegetation spectra, very few studies have
utilized fractional derivative in analyzing hyperspectral reflectance of crop leaves. To our knowledge,
only one study from Chen, Li, and Tang [47] found 0.6 order spectra that resulted in superior
performance in estimating nitrogen concentration of natural rubber (Hevea brasiliensis). Additionally,
Wang, Zhang, Kung, and Johnson [35] reported that 1.2 order fractional derivative of hyperspectral
data yielded the best results for estimating soil organic matter content. Fu, Xiong, and Tian [39]
conducted a similar investigation and showed that FD analysis can increase the correlation coefficient
between FD-augmented spectra and soil organic matter content. However, Fu, Xiong, and Tian [39]
did not conclude with any single order that provided the best result in predictive analytics.
The results from our study also dictate that when reflectance spectra are used in modeling LCC,
derivative calculus can significantly increase the correlation between LCC until a certain order
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(Figure 5). However, different models yielded their best performance at different orders. For example,
both SVR and RFR had higher model performance at order 1.0, but PLSR showed its best performance
at order 0.2. We also found that the best performance was retrieved from 1.0 order (i.e., first order) with
SVR model when reflectance spectra were used as model input. However, the second highest model
performance from 0.8 order with SVR (R2 of 0.729 and RMSE% of 8.201) used fewer features (n = 25)
compared to the highest performing model that used more features (n = 75), yet the results were
only slightly less than the best model. Therefore, we find it inconclusive to state that either fractional
derivative or integer-order derivative is better in estimating LCC from sorghum.

Derivative calculus augmented spectra have the capability to extract more useful information from
hyperspectral data since the order is extended arbitrarily to non-integers as well as integers [29,30,34].
This process increases the possibility of highlighting more detailed features within the limits of integer
derivatives. For example, Figure 10 shows reflectance spectra of a sample leaf (i.e., from the median
LCC value of 50.5 µg/cm2) without any derivative analysis (i.e., original spectrum, Figure 10a) and
derivative spectrum from order 0.2 to 2.0 with a smaller spectral window (i.e., the NIR region of
700–1000 nm). The selected features with the best models found at each derivative order are also
highlighted. Figure 10 is a close-up version of Figure 4 that highlights how the increasing derivative
order amplify certain information in the spectral curve and how important features are then selected
by different feature selection methods. According to Figure 10a, the original spectra show an increasing
slope until around 760 nm and start to flatten out until 1000 nm. With increasing derivative order,
the flatten curve starts to show abrupt peaks on it and the important features start to appear in a
distributed manner. For example, with order 0.6 (Figure 10d), important features are seen all over
the spectrum instead of clustering at the lower end of the spectrum as in the case of original spectra
(Figure 10a). This is the reason that the correlation coefficient between LCC and derivative spectra
significantly increased with increasing derivative orders (Figure 5).Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 29 
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the most important region for feature selection. The red circles show the position of features which
were selected as input for the best performing model of corresponding order. The n represents the
number of features found within the NIR range.

Alternatively, use of VIs has been considered as a convenient and powerful feature for estimating
different plant characteristics from spectral data. Many studies have reported the good predictive
capabilities of using VIs in predicting leaf biochemical properties [122–128]. We have also found
superior results with VIs instead of performing any derivative augmentation (i.e., the best performing
model was from 15 VIs). Figure 11 shows those VIs that resulted in the best performing model
using ELR and original spectra. These VIs were selected by PCC as the feature selection method.
One possible reason behind VIs showing the best performance could be that VIs were developed to
enhance certain vegetation information. LCC is considered as one of the major leaf pigments that
reflects the photosynthetic ability and overall health status of a plant [129]. Although the VIs selected
for this study were based on a wide literature survey, most of the VIs were found highly sensitive to
LCC. For example, the highest correlation was found for the Red-Edge Position (REP) index (Figure 11,
equation in Table 1) developed by Clevers [92]. This index highlights reflectance from the red-edge
position of the spectrum and simplifies the spectral curve to a straight line between 700 nm and 740 nm.
The reflectance of the REP was then estimated as being half of the reflectance in the NIR at about 780 nm
and the reflectance minimum of the chlorophyll absorption feature at around 670 nm. By highlighting
the chlorophyll absorption band, this index provided the best score and can be used as a potential
feature. Other VIs were also closely related to LCC and other leaf biochemical parameters which
helped different models to estimate LCC using the original spectra instead of using VIs from derivative
transformed spectra. An advantage of using VIs instead of reflectance is that they reduce the feature
space and increase model computational efficiency. However, the selection of VIs is very important for
estimating certain plant characteristics.
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4.2. Impact of Feature Selection Methods in Modeling Pipeline

Selecting sensitive features for modeling any biochemical properties is crucial, especially when
the input feature space is large. Use of PCC (or absolute value of Pearson’s correlation coefficient)
is very common for sensitive feature selection in the plant science community. However, we also
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explored the effectiveness of the VIP score from PLSR and MDI score from RFR. Results suggested
that in terms of reflectance-based analysis, MDI worked better since the scores were not saturated
over the spectrum for different derivative orders. MDI score is calculated based on node impurity,
which is a measure of homogeneity of the variable. With increasing order, the difference between each
feature range increases a lot with abrupt changes which increases the impurity in the feature space.
That is why MDI can unilaterally pick important features from the spectrum at large distances with
increasing orders. With PCC, there exists the chance of multicollinearity (correlation among features)
which results in similar feature importance score for adjacent bands in our analysis. On the other hand,
since MDI is a tree-based scoring measure, the multicollinearity problem was avoided.

On the other hand, in terms of VI-based analysis, PCC tends to pick up sensitive features
distributed over all the available VIs. Since some of the individual VIs showed higher correlation
compared to individual original spectra or derivative augmented spectra, PCC was able to pick up
important features for modeling. An advantage of PCC is that it does not need to train any model,
whereas both VIP and MDI scores were calculated after training PLSR and RFR models, respectively.

4.3. Performance of Machine Learning Models in LCC Estimation

In plant science and remote sensing communities, the PLSR, RFR, and SVR have proven to be
effective machine learning models for estimating biochemical properties. Recently, ELR has been utilized
as a potential machine learning method in regression problems due to its enhanced computational
efficiency [58,63]. Our study reveals that within reflectance-based analysis, SVR consistently outperformed
all other models in every FD order. Many studies have also reported the superior predictive capability
of SVR in estimating crop phenotypic traits [130–132]. This can be attributed to the high generalization
ability of SVR by providing a global minimum solution [131,133]. ELR also performed well at 0.4 order
derivatives but started to decrease its performance with increasing derivative order. Although the
difference between model evaluation metrics of different orders is small in some cases (e.g., SVR at
order 1.0 and SVR at order 0.8), it has to be noted that the model training was performed with a 10-fold
cross validation and the evaluation metrics were calculated using a validation dataset which was
completely independent of the training dataset and only used for model evaluation. This showed the
robustness of the trained models. Arguably, our study concluded that SVR from order 1.0 is better than
SVR from order 0.8. However, for future studies with other crops or other study areas, the result may
vary, so careful design of the modeling pipeline is required before making such an inference.

In terms of VI-based analysis, most of the model performed well with original spectra. The best
performing model within both VI-based and reflectance-based analysis was found with ELR from
reflectance. However, the ML models in terms of VI-based analysis did not perform well with increasing
derivative orders. The reason behind this is that VIs were developed to amplify certain information from
vegetation spectra rather than derivative-augmented spectra. Therefore, the derivative-augmented
spectra were already amplified with different orders and when VIs were calculated from these
derivative-augmented spectra, more noise was introduced to the feature space. This resulted in
continuous poor performance of models over increasing FD orders. Therefore, it is not advisable to
calculate VIs from derivative-augmented spectra.

5. Conclusions

Accurate and non-destructive measures for estimating LCC for sorghum is an important step
to support plant breeders and genetic selection studies. This study investigates the effectiveness of
derivative calculus and machine learning models in estimating LCC of sorghum from hyperspectral
spectroscopy. Major conclusions include:

1. In terms of reflectance-based analysis, increasing derivative order can show improved model
performance until a certain order; however, it is inconclusive to state that a particular derivative
order is optimal for estimating LCC of sorghum. Further assessment with data from multiple
study sites and growth stages is required to make such an inference.
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2. VI-based modeling with original spectra outperformed reflectance-based modeling with
derivative-augmented spectra.

3. Sensitive feature selection is a crucial step in any machine learning pipeline. MDI score was found
effective in selecting sensitive features from a large feature space (reflectance-based analysis),
whereas PCC worked better with a smaller feature space (VI-based analysis).

4. When single wavelengths were used in the analysis from different FD orders, SVR outperformed
all other models. However, PLSR and ELR required fewer model parameters and computational
time, which can be advantageous in model training. Alternatively, ELR with VIs from original
spectra yielded slightly better results compared to all other models. Therefore, ELR worked better
when hand-crafted features (VIs) were used.

The findings from this study will help plant breeders and scientists in estimating LCC for sorghum
non-destructively and efficiently. It also demonstrates a potential framework for how to prepare a
semi-automated machine learning pipeline that highlights robust data processing, feature selection,
model training, and model evaluation techniques, which can be adopted to other plant phenotypic
estimation studies as well. Our next steps and future work will include data augmentation and
transferring the pipeline to hyperspectral imagery collected from unmanned aerial vehicle platforms
to estimate LCC and other biochemical properties of sorghum.
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